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Supervision of Learning Correspondence
Self-Supervision from Temporal Signals

Forward-backward tracking as 
self-supervision

Wang & Jabri et al. 2019

Jabri et al. 2020
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Image-level Similarity Learning

Enforce two views of the same 
image to have similar features in 
high-level fully-connected layer

He et al. 2020

Chen et al. 2020

Chen et al. 2020

Grill et al. 2020
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Image-level Similarity Learning

The mid-level features may learn 
correspondence implicitly. 

Enforce two views of the same 
image to have similar features in 
high-level fully-connected layer
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Video Frame-level Similarity (VFS) Learning
Image -> Video frame

Enforce two frames from the same 
video to have similar features in 
high-level fully-connected layer

Correspondence emerges in 
res4/res5 by maximizing the 
frame-level similarity only
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VFS Pipeline
With negative pairs

Encode frames with Predictor/Target Encoder

Compute affinity between two branches

Maximize the affinity of positive pairs 
Minimize the affinity of negative pairs

Concatenate features from negative bank
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Evaluation
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Label propagation
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Evaluation
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SiamFC Tracker
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Summary

✴ The simple VFS achieves state-of-the-art performance for self-supervised 
correspondence learning.

✴ Tracking based pretext task may not be necessary for self-supervised 
correspondence learning.

✴Color augmentation is beneficial in object-level but jeopardize the fine-grained 
correspondence.

✴ Learning without negative improves correspondence learning.
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