Rethinking Self-supervised Correspondence Learning: A Video Frame-level Similarity Perspective

Jiarui Xu

UC San Diego

Xiaolong Wang

Spatial Temporal Correspondence

Spatial Temporal Correspondence

Spatial Temporal Correspondence

Spatial Temporal Correspondence Fine-grained Correspondence

Spatial Temporal Correspondence Fine-grained Correspondence

Object-level Correspondence

Supervision of Learning Correspondence Human Supervision from Annotated Datasets

Supervision of Learning Correspondence Human Supervision from Annotated Datasets

- Manually Labeled datasets:
 - DAVIS VOS
 - YouTube-VOS
 - OTB

. . .

• GOT-10K

Supervision of Learning Correspondence Human Supervision from Annotated Datasets

- Manually Labeled datasets:
 - DAVIS VOS
 - YouTube-VOS
 - OTB
 - GOT-10K

Supervision of Learning Correspondence Self-Supervision from Temporal Signals

Supervision of Learning Correspondence Self-Supervision from Temporal Signals

Forward-backward tracking as self-supervision

Wang & Jabri et al. 2019

Is explicit tracking the only way to learn correspondence?

Tracking based pretext task

- - Tracking forward and backward
 - Maximize tracking consistence

Tracking based pretext task

Tracking based pretext task Tracking forward and backward Maximize tracking consistence

Ours

Tracking based pretext task Tracking forward and backward Maximize tracking consistence

Ours

Without explicit tracking

Maximize Video Frame-level Similarity

Tracking based pretext task Tracking forward and backward Maximize tracking consistence

Ours

Without explicit tracking

Maximize Video Frame-level Similarity

Similarity Learning

Image-level Similarity Learning

Enforce two views of the same image to have similar features in high-level fully-connected layer

He et al. 2020 Chen et al. 2020 Chen et al. 2020 Grill et al. 2020

Image-level Similarity Learning

Enforce two views of the same image to have similar features in high-level fully-connected layer

Image-level Similarity Learning

Enforce two views of the same image to have similar features in high-level fully-connected layer

The mid-level features may learn correspondence implicitly.

Image -> Video frame

Image -> Video frame

Enforce two frames from the same video to have similar features in high-level fully-connected layer

Image -> Video frame

Enforce two frames from the same video to have similar features in high-level fully-connected layer

Correspondence emerges in res₄/res₅ by maximizing the frame-level similarity only

VFS Pipeline

VFS Pipeline

Time

Encode frames with Predictor/Target Encoder

Encode frames with Predictor/Target Encoder

Compute affinity between two branches

Encode frames with Predictor/Target Encoder

Compute affinity between two branches

Maximize the affinity

Encode frames with Predictor/Target Encoder

Encode frames with Predictor/Target Encoder

Concatenate features from negative bank

Encode frames with Predictor/Target Encoder

Concatenate features from negative bank

Compute affinity between two branches

Encode frames with Predictor/Target Encoder

Concatenate features from negative bank

Compute affinity between two branches

Maximize the affinity of positive pairs Minimize the affinity of negative pairs

Evaluation Fine-grained Correspondence
Evaluation Fine-grained Correspondence

Evaluation Fine-grained Correspondence

Label propagation

Evaluation Object-level Correspondence

Evaluation Object-level Correspondence

SiamFC Tracker

CRW Jabri et al. (2020)

CRW Jabri et al. (2020)

CRW Jabri et al. (2020)

CRW Jabri et al. (2020)

Compare with State-Of-The-Art OTB-100 Visual Object Tracking

SimSiam: Chen et al. (2020) MoCo: He et al. (2020) VINCE: Gordon et al. (2020)

Supervised: He et al. (2015) RegionTracker: Purushwalkam et al. (2020) CRW: Jabri et al. (2020)

Our VFS

Qualitative Results OTB-100 Visual Object Tracking

CRW Jabri et al. (2020)

Qualitative Results OTB-100 Visual Object Tracking

CRW Jabri et al. (2020)

Findings and insights

No aug

No aug

Color aug

	-
_	

Object-level Correspondence on OTB-100

Findings and insights **Negative pairs**

Findings and insights **Negative pairs**

ImageNet Linear Classification

Paper Session #8

jerryxu.net/VFS

github.com/xvjiarui/VFS

* The simple VFS achieves state-of-the-art performance for self-supervised correspondence learning.

Paper Session #8

jerryxu.net/VFS

github.com/xvjiarui/VFS

- * The simple VFS achieves state-of-the-art performance for self-supervised correspondence learning.
- * Tracking based pretext task may not be necessary for self-supervised correspondence learning.

Paper Session #8

- * The simple VFS achieves state-of-the-art performance for self-supervised correspondence learning.
- * Tracking based pretext task may not be necessary for self-supervised correspondence learning.
- * Color augmentation is beneficial in object-level but jeopardize the fine-grained correspondence.

Paper Session #8

github.com/xvjiarui/VFS

- * The simple VFS achieves state-of-the-art performance for self-supervised correspondence learning.
- * Tracking based pretext task may not be necessary for self-supervised correspondence learning.
- * Color augmentation is beneficial in object-level but jeopardize the fine-grained correspondence.
- * Learning without negative improves correspondence learning.

Paper Session #8

jerryxu.net/VFS

<u>github.com/xvjiarui/VFS</u>

